## Chapter 14, Lesson 3 Angles and Turns

## Angles \& Turns

An angle is formed by two rays with a common endpoint.
Angles are measured by the amount of rotation from one ray to another.


full turn

Identify each angle below using the following letters:

- $A=$ An angle that measures less than $1 / 4$ turn.
- $B=$ An angle with a measure of $1 / 4$ turn.
- $C=$ An angle with a measure greater than $1 / 4$ turn, but less than $1 / 2$ turn.
- $D=$ An angle with a measure of $1 / 2$ turn.
- $E=$ An angle that measures greater than $1 / 2$ turn.


2. 
3. 



Angles \& Turns: More Practice
Using the circles below, draw an angle to represent each measure.
I. $1 / 2$ turn
3. $1 / 4$ turn

2. greater than $1 / 2$ turn
4. less than $1 / 4$ turn

$\square$

## Chapter 14, Lessons 4: Classify Angles

Learning Targets: I can identify angles as right, acute, or obtuse.

## Watch Me

An angle is a geometric shape that is formed when two $\qquad$ have the same endpoint.


Angles are measured using degrees. There are $\qquad$ degrees in a full rotation.
The symbol for degrees is ${ }^{\circ}$


| Angle | Definition | Pictures |  |
| :---: | :--- | :--- | :--- |
| right <br> angle | A right angle measures__. It has <br> two edges that go straight up and <br> straight across. |  |  |

Angles are described in comparison to right angles, such as greater than, less than, or the same size as a right angle.

| acute <br> angle | An acute angle is smaller than a right <br> angle and measures less than |  |  |
| :---: | :--- | :--- | :--- |
| obtuse <br> angle | An obtuse angle is bigger than a right <br> angle and measures more than <br> but less than |  |  |

Count the number of acute, obtuse and right angles inside each shape.


## You Try

Identify each angle


Determine if the angle described is acute, obtuse, or right

| $7^{\circ}$ | $165^{\circ}$ | $90^{\circ}$ |
| :--- | :--- | :--- |
| $74^{\circ}$ | $100^{\circ}$ | $89^{\circ}$ |

## Chapter 14, Lessons 5 Measure Angles

Learning Target: I can use a protractor to find the degree measure of an angle. Lets Review...

|  |  |  |
| :---: | :---: | :---: |
| Which choice best represents $\llcorner\mathrm{KLM}$ ? <br> A. $176^{\circ}$ <br> B. $79^{\circ}$ <br> C. $138^{\circ}$ <br> D. $21^{\circ}$ | Which choice best represents $\angle \mathrm{ABC}$ ? <br> A. $67^{\circ}$ <br> B. $142^{\circ}$ <br> C. $100^{\circ}$ <br> D. $15^{\circ}$ | Which choice best represents L KLM ? <br> A. $21^{\circ}$ <br> B. $160^{\circ}$ <br> C. $114^{\circ}$ <br> D. $0^{\circ}$ |



The protractor is a tool used to measure angles. The length of the rays does not affect the measure.

1. Line up the protractor

- Place the middle of the protractor on the endpoint of the angle with the straightedge along one ray.


2. Extend and Line up the angle

- Using the straightedge of the protractor, extend the ray.
- Line up one ray of the angle with the line on the protractor.

3. Measure the angle

- Find the tic mark on the protractor that aligns with the second ray of the angle.



## Reading a Protractor

A protractor is a tool used to measure angles (in degrees).
When using a protractor, it is important to first classify the angle:

- Acute angle $\sim$ This angle should have a measure less than $90^{\circ}$.
- Obtuse angle $\sim$ This angle should have a measure greater than $90^{\circ}$.

Angle $I$ is an acute angle.

- The measure must be less than $90^{\circ}$.


The ray lands on the $30^{\circ}$ and $150^{\circ}$ mark.
Angle 1 is acute, so the measure is $30^{\circ}$.
The ray lands on the $30^{\circ}$ and $150^{\circ}$ mark.
Angle 1 is acute, so the measure is $30^{\circ}$.

Angle 2 is an obtuse angle.

- The measure must be more than $90^{\circ}$.


The ray lands on the $50^{\circ}$ and $130^{\circ}$ mark. Angle 2 is obtuse, so the measure is $130^{\circ}$.

Classify each angle below. Then, measure using the protractor.


## Reading a Protractor: More Practice

Classify each angle below. Then, use the protractor to measure the angle.


## Chapter 14 , Lesson 6 Joining angles

## Joining Angles

Two angles can be joined to form a larger angle. To determine the measure
of the larger angle, add the two angle measures.


Add to find the measure of the larger angle.
I. Angle $x=\square^{\circ}$

4. $\angle Q R Z=$

2. Angle $x=$ $\qquad$ $\circ$

5. $\angle A F K=$ $\qquad$

3. Angle $x=$ $\qquad$

6. $\angle M N O=$ $\qquad$


# Chapter 14, Lesson 7 Separating Angles 

## Separating Angles

The measure of an angle equals the sum of its parts. When the measure of the larger angle and one of the smaller angles is known, subtract to determine the measure of the other small unknown angle.


The combined measure of each angle below is $90^{\circ}$. Find the measure of the unknown angle.

1. Angle $x=$ $\qquad$ ${ }^{\circ}$

2. Angle $k=$ $\qquad$ ${ }^{\circ}$
3. Angle $m=$ $\qquad$ -



The combined measure of each angle below is $180^{\circ}$. Find the measure of the unknown angle.
4. Angle $b=$ $\qquad$ $\circ$

5. Angle $z=$ $\qquad$ $\circ$
6. Angle $h=$ $\qquad$ -


## Chapter 14, Lesson 8 Joining and separating more than two angles

Joining More than Two Angles
More than two angles can be joined to form a larger angle. To determine
the measure of the larger angle, add all angle measures.


Add to find the measure of the larger angle.

1. Angle $x=$ $\qquad$ -

2. Angle $x=$ $\qquad$ -

3. Angle $x=$ $\qquad$ -

## Separating More Than Two Angles

In the angles below, you must first add the two known smaller angles.
Then, subtract this measure from the known combined angle to determine the measure of the unknown angle.

Example 1: $38^{\circ}+47^{\circ}+x=110^{\circ}$


Step 1
Add the two small
known angles.


The measure of angle x is $25^{\circ}$.

The combined measure of each angle below is $120^{\circ}$. Find the measure of the unknown angle.

1. Angle $x=\ldots$. -

2. Angle $k=$ $\qquad$ ${ }^{\circ}$


Step 2:
Subtract the large angle from this total.
3. Angle $m=$ $\qquad$ $-$


# Chapter 14, Lesson 9 Additive Angles in shapes 

## Additive Angles in Shapes

You can determine the measure of an unknown angle in shapes.

Example 1:
The angles in a triangle add up to $180^{\circ}$.

Example 2:
The angles in a quadrilateral add up to $360^{\circ}$.

| $\begin{array}{r}90^{\circ} \\ +58^{\circ} \\ \hline\end{array}$ | $\begin{array}{r}180^{\circ} \\ -148{ }^{\circ} \\ \hline\end{array}$ |  | $90^{\circ}$ $90^{\circ}$ | $\begin{array}{r} 360^{\circ} \\ -\quad 264^{\circ} \end{array}$ | a. | 84. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 148. | $32^{\circ}$ |  | $\begin{array}{r} \\ +84^{\circ} \\ \hline 264\end{array}$ | $96^{\circ}$ |  |  |
|  |  | $90^{\circ}$ | $264{ }^{\circ}$ |  | $90^{\circ}$ | $90^{\circ}$ |

The measure of angle $t=32^{\circ}$.
The measure of angle $q=96^{\circ}$.

Find the measure of the unknown angle.

1. $x=$ $\qquad$ ${ }^{\circ}$
2. $x=$ $\qquad$ $-$

3. $x=$ $\qquad$ -

